

Corporate Overview September 2025

In vivo engineering for disease treatment and prevention

### Developing Transformative Medicines for People with Cancer

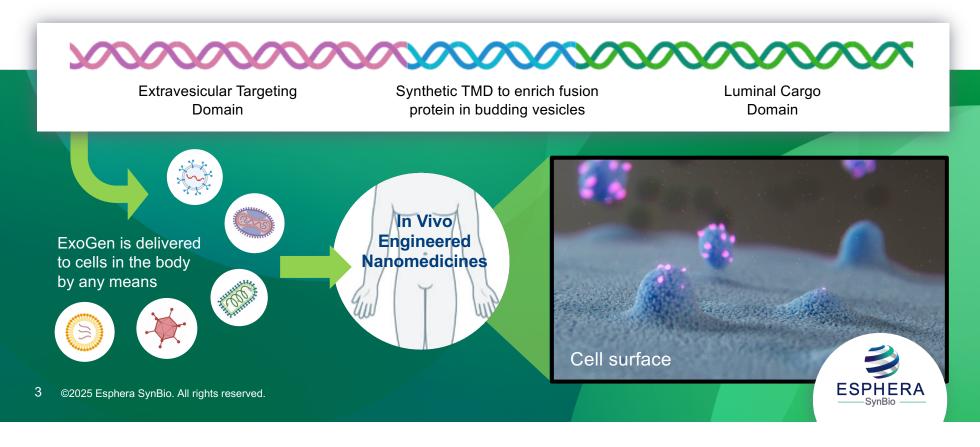
Esphera SynBio is a synthetic biology company deploying the **ExoGen platform** for the in vivo generation of medicines

# Differentiated and De-Risked Lead Asset

 Extensive CMC and clinical experience

#### High Potential Platform/Pipeline with Active Pharma Engagement

- Active Pharma collaboration (LNP/mRNA vaccines)
  - In vivo CAR-T asset
  - Non-dilutive engine to fund pipeline


### Experienced Team

- 5 companies founded;5-company exits
- >\$500M non-dilutive financing
- 17 trials, 26 patents,
   226 papers



### Introducing ExoGen Platform: Engineering Medicines In Vivo

Synthetic nucleic acid transgene encoding a multimeric fusion protein designed to traffic to budding vesicles



### ExoGen Design for Oncology Lead Asset ESPH-01

Nanomedicine targeting: Immune cells (ScFv)

Extravesicular Targeting Domain

#### **Lead Oncology Asset:**

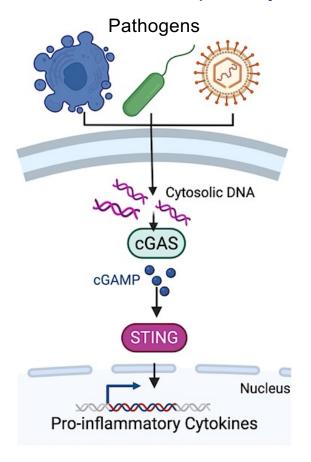
- Proprietary ScFv targeting human and murine DEC205
- Delivering antigens to dendritic cells to enhance antigen presentation

Synthetic Transmembrane Domain (TMD)

### Core Esphera Technology:

- Artificial and proprietary
- Superior for vesicle loading

Payload delivered: STING agonist


## Luminal Cargo Domain

#### Proprietary Immunostimulatory Enzymes:

 Bacterial dinucleotide cyclases constitutively generate cyclic dinucleotides: potent STING agonists

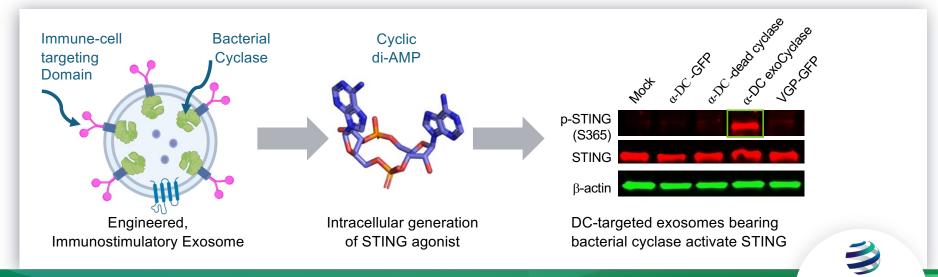


#### **Functional STING pathway**



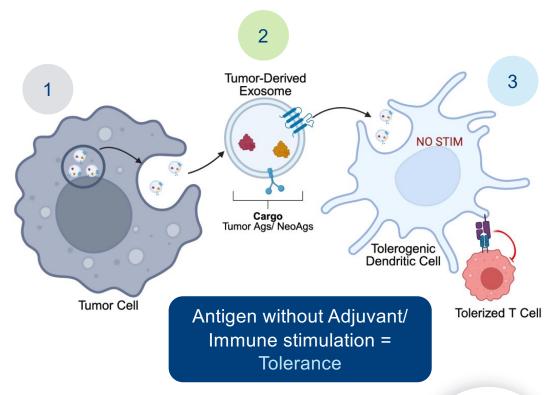
# First generation approaches to agonize STING have failed

#### Our understanding of STING biology has evolved:


- 1. Targeting cancer cells with small molecule STING agonists in attempts to turn 'cold tumors hot' doesn't work well; most cancers have evolved defects in their STING signaling
- 2. Delivery of STING agonists leads to off-target effects: STING activation in effector immune cells (T-Cells, B-cells) is extremely toxic

The solution to STING agonism is targeted delivery to antigen presenting cells to generate potent anti-tumor immune responses




#### STING Potential Unlocked: ExoGen Solution for Precision Activation

- Esphera delivers STING agonism only to antigen presenting cells via the ExoGen immune-cell targeting domain
- 2. Esphera does not deliver small molecule; we deliver an enzyme that generates STING small molecule intracellularly (only in targeted cells)
- 3. To further safeguard against potential off-target events, Esphera uses bacterial cyclic dinucleotides are not efficiently taken up by effector immune cells



### Tumor Cell Biology: Exosomes Tolerize the Immune System


- Tumor cells are known to be prolific producers of exosomes
- Tumor-derived exosomes are known to contain tumor antigens (including neoAgs)
- Tumor-derived exosomes are naturally immunosuppressive as they provide antigen without stimulation







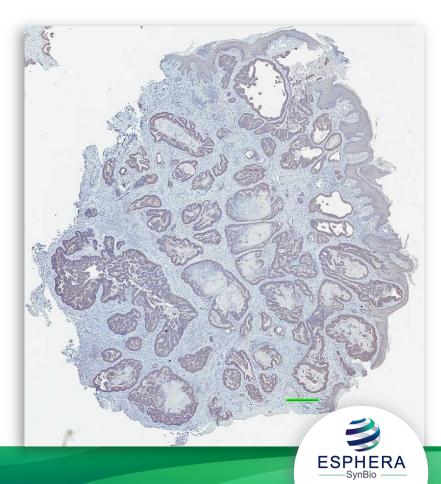
- 1 Delivery of Esphera's ExoCyclase transgene to tumor cells in vivo
- 2 ExoCyclase protein traffics to budding tumor-derived vesicles creating in vivo cancer vaccine
- In vivo engineered nanomedicines deliver cyclase and tumor antigens to DCs
- DCs produce STING agonist intracellularly, activating and maturing them to present tumor antigens to T-Cells
- 5 Activated T-Cells kill tumors cells



By capitalizing on the existing biology, we escape the need for tumor Ag prediction, achieving a personalized cancer vaccine with an off-the shelf drug.

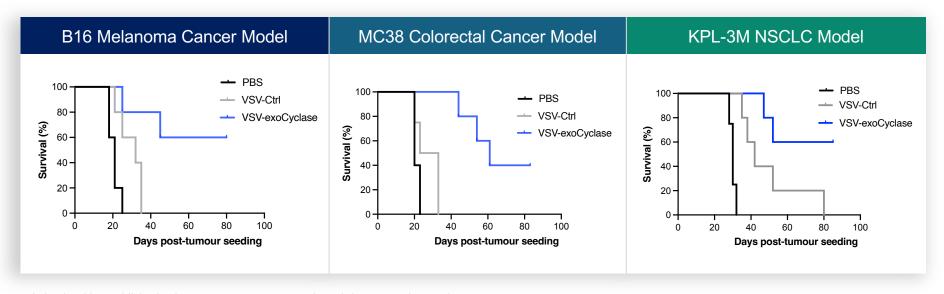


### OVs for Best-in-Class ExoCyclase Delivery to Tumors


Oncolytic viruses represent the gold standard for transgene delivery to tumors, offering unmatched precision, safety and potency

#### Clinical and commercial feasibility

 Several trials have demonstrated successful transgene delivery following I.V. delivery


nature Breitbach et al, 2011

- ✓ Long track record demonstrating clinical safety
- Esphera co-founders are the world-leading experts in manufacturing, scaling, and Phase I launch of OV trials
- Current manufacturing commercially feasible with excellent COGs



### Curative Outcomes in Several Syngeneic Mouse Models

VSV-exoCyclase monotherapy leads to a significant anti-tumoral outcome in several mouse models of cancer



Animals with established subcutaneous tumors were given 4 doses, starting on day 7



### First in Class Oncology Opportunity

#### Ideal Cancer Vaccine Product Profile

- **Polyvalent.** To avoid immune escape mechanisms, the ideal tumor vaccine should be targeted to more than one antigen
- Personalized. Effective tumor vaccines will include personalized tumor antigens
- **Off-the-Shelf.** To ensure rapid patient availability, and cost-effective manufacturing, commercially viable cancer vaccines should be off-the-shelf
- Potent. Vaccines must provide targeted co-delivery of both antigens and potent immune stimulation

Esphera's revolutionary approach to personalized cancer vaccines delivers on every front.

> To the best of our knowledge, ESPH-01 is the first off-the-shelf and personalized polyvalent cancer vaccine

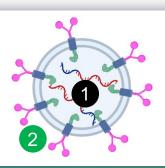


### Significant R&D Progress Made Since Seed Financing

In addition to \$2M CAD Seed financing (closed Oct 2023), Esphera has secured and leveraged an additional \$5M CAD non-dilutive financing to advance the ExoGen platform, ESPH-01 lead asset and complete pivotal POC studies for additional pipeline opportunities.

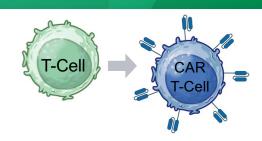
Oncology Pipeline

| In Vivo Engineering Asset Opportunities |                             |                                                 |                                                                 |  |
|-----------------------------------------|-----------------------------|-------------------------------------------------|-----------------------------------------------------------------|--|
| Asset / Delivery Modality               | Field                       | Milestones Achieved                             | Development Strategy                                            |  |
| ESPH-01<br>Replicating Viral Vector     | Oncology,<br>Cancer Vaccine | In Vivo POC, Product lock,<br>Manufacturing POC | Advance through Phase I clinical POC using Series A Proceeds    |  |
| ESPH-02<br>Enveloped Delivery Vehicle   | Oncology,<br>In vivo CAR-T  | IP filed,<br>Ex vivo POC                        | Advance through In Vivo POC then seek R&D collaboration/license |  |
| Personalized Ag<br>LNP/mRNA             | Oncology,<br>Cancer Vaccine | In vivo POC                                     | Biotech/Pharma license deal                                     |  |


Infectious Disease

| Target Ag TBD<br>LNP/mRNA                     | Human Infectious<br>Disease, Vaccine | In vivo POC, Active Pharma R&D Collaboration                      | Advance in partnership with Pharma, and out-license ahead of Phase I |
|-----------------------------------------------|--------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|
| Target Ag TBD<br>Non-replicating Viral Vector | Vet Infectious Disease,<br>Vaccine   | In vivo POC, Biotech R&D Collaboration, NEW: Pharma NDA, R&D plan | Advance in partnership with Pharma, and out-license ahead of Phase I |





### Esphera's In Vivo CAR T-Cell Technology Opportunity

Enveloped **Delivery Vehicle** (drug product)

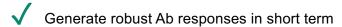


- Esphera's human T-Cell adapted saRNA encoding CAR transgene
- ExoGen construct to enhance saRNA loading and T-Cell targeting/delivery





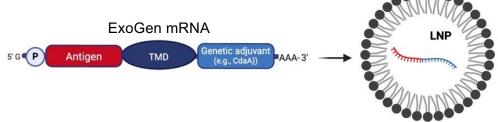
Circulating T-Cells take up engineered vesicle; saRNA generates strong and durable expression of functional CAR.


**ESPHERA** 

Technology delivers a human T-Cell-adapted saRNA to T-Cells causing strong and durable CAR expression using an off-the-shelf, lentivrus-free solution.

### Drug Product Design for Step Change LNP/mRNA Vaccines

#### First Generation LNP/mRNA Vaccines





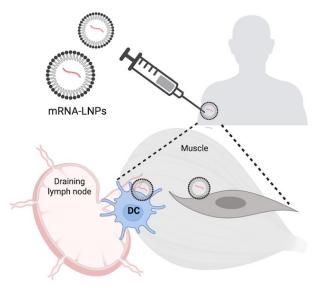

Immuno-stimulation provided by LNP may not promote optimal T-Cell responses

May not provide long-term memory responses in humans\*

#### ExoCyclase LNP/mRNA Vaccines



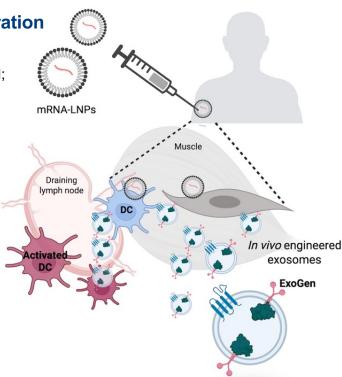
- Same manufacturing process, highly similar drug product, leads to enhanced immune responses simply modifying mRNA design
- In vivo engineered nanomedicines co-deliver Ag and strong adjuvant to immune cells leading to superior Ab and T-Cell responses
- Potential opportunity to dose down, reducing COGs




<sup>\*</sup> Nguyen, D.C., Hentenaar, I.T., Morrison-Porter, A. et al. SARS-CoV-2-specific plasma cells are not durably established in the bone marrow long-lived compartment after mRNA vaccination. Nat Med 31, 235-244 (2025).

### Esphera's Step-Change Opportunity for LNP/mRNA Vaccines

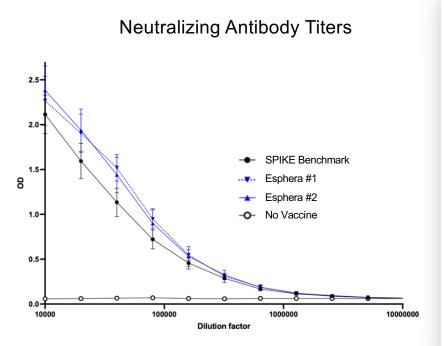
#### First Generation LNP/mRNA Vaccines

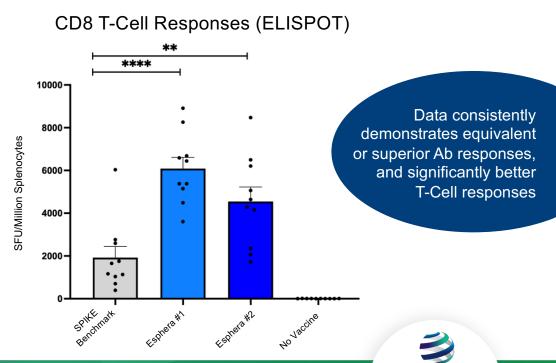

mRNAs released in cells produce vaccine Ag, and LNP stimulates recruitment of DCs for Ag presentation, and eventual neutralizing Ab responses.



**Esphera's Next Generation LNP/mRNA Vaccines** 

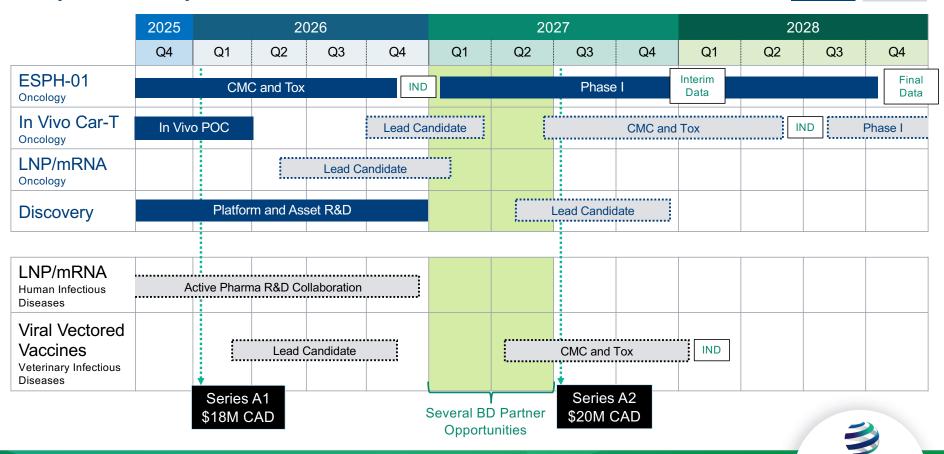
Initial mechanism is identical; Esphera's vaccines will generate the same baseline immune responses as first generation vaccines.


ExoGen delivery via LNP will then further amplify immune responses.






### Esphera Enhanced LNP/mRNA Vaccine In Vivo POC


Esphera ExoCyclase LNP/mRNA has been compared to Moderna's COVID vaccine using standard dosing in mouse models





### Esphera Pipeline and Series A Value Creation







#### Esphera SynBio is seeking a Series A investment of \$38M CAD

- Series A use of proceeds: ESPH-01 CMC, Tox, and Phase I clinical trial
- Pipeline applications to be funded through business development revenue and/or non-dilutive sources of capital

#### Financing Strategy and Next Steps

#### Why Invest

- 1. First-in-class lead asset oncology opportunity
- Novel and proprietary solution to STING agonism
- Significant pharma interest and additional licensing/exit opportunities:
  - Developing successful in vivo CAR T-Cell technology
  - Significantly improved immune responses for LNP/mRNA vaccines

#### Our Edge

- Pharma collaboration in infectious disease is underway
- Significant BD license opportunities in near-term
- Experienced team
- Strong track record raising non-dilutive capital to extend runway







For more information:

Brian Lichty, CEO blichty@EspheraSynbio.ca

Julia Pomoransky, Business Development jpomoransky@EspheraSynbio.ca